Lecture 15

Zeros of H(z) and the Frequency Domain

License Info for SPFirst Slides

• This work released under a Creative Commons License with the following terms:
 • Attribution
 • Non-Commercial
 • Share Alike
 • Full Text of the License
 • This (hidden) page should be kept with the presentation

READING ASSIGNMENTS

• This Lecture:
 – Chapter 7, Section 7-6 to end

• Other Reading:
 – Recitation & Lab: Chapter 7
 • ZEROS (and POLES)
 – Next Lecture: Chapter 8

LECTURE OBJECTIVES

• ZEROS and POLES
• Relate \(H(z) \) to FREQUENCY RESPONSE
 \[H(e^{j\theta}) = H(z) \bigg|_{z=e^{j\theta}} \]

• THREE DOMAINS:
 – Show Relationship for FIR:
 \[h[n] \leftrightarrow H(z) \leftrightarrow H(e^{j\theta}) \]

DESIGN PROBLEM

• Example:
 – Design a Lowpass FIR filter (Find \(b_k \))
 – Reject completely \(0.7\pi, 0.8\pi, \) and \(0.9\pi \)
 • This is NULLING
 – Estimate the filter length needed to accomplish this task. How many \(b_k \)?

• Z POLYNOMIALS provide the TOOLS
Z-Transform

- **Definition**: Polynomial Representation of LTI System:

 \[H(z) = \sum_{n} h[n] z^{-n} \]

- **Example**:
 \[\{ h[n] \} = \{ 2,0,-3,0,2 \} \]
 \[
 H(z) = 2z^{-0} + 0z^{-1} - 3z^{-2} + 0z^{-3} + 2z^{-4} \\
 = 2 - 3z^{-2} + 2z^{-4} \\
 = 2 - 3(z^{-1})^2 + 2(z^{-1})^4
 \]

Convolution Property

- Convolution in the \(n \)-domain
 - **Same as**
 - Multiplication in the \(z \)-domain

\[y[n] = h[n] * x[n] \iff Y(z) = H(z)X(z) \]

\[y[n] = x[n] * h[n] \iff y[n] = \sum_{k=0}^{M} h[k] x[n-k] \]

Convolution Example

\[x[n] \quad H(z) \quad y[n] \]

\[
\begin{align*}
 x[n] &= \delta[n-1] + 2\delta[n-2] \\
 h[n] &= \delta[n] - \delta[n-1] \\
 y[n] &= x[n] * h[n] \\
 H(z) &= 1 - z^{-1} \\
 Y(z) &= (z^{-1} + 2z^{-2})(1 - z^{-1}) = z^{-1} + z^{-2} - 2z^{-3} \\
 y[n] &= \delta[n-1] + \delta[n-2] - 2\delta[n-3]
\end{align*}
\]

Three Domains

- **Z-Transform Domain**
 - **Polynomials: H(z)**

- **Time Domain**
 - **\(\{ b_k \} \)**

- **Frequency Domain**
 - **\(H(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-j\omega k} \)**

Frequency Response?

- Same Form:
 \[\hat{\omega} - \text{Domain} \]
 \[H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega} k} \]
 \[\hat{z} = e^{j\hat{\omega}} \]

- **\(z \)-Domain**
 \[H(z) = \sum_{k=0}^{M} b_k z^{-k} \]

Another Analysis Tool

- **\(z \)-Transform Polynomials are Easy!**
 - **Roots, Factors, etc.**

- **Zeros and Poles**: Where is \(H(z) = 0 \) ?

- The \(z \)-domain is **Complex**
 - \(H(z) \) is a **Complex-Valued** function of a **Complex Variable** \(z \)
ZEROS of $H(z)$

- Find z, where $H(z) = 0$

 \[
 H(z) = 1 - \frac{1}{2} z^{-1}
 \]

 \[1 - \frac{1}{2} z^{-1} = 0 \implies z - \frac{1}{2} = 0\]

 Zero at $z = \frac{1}{2}$

POLES of $H(z)$

- Find z, where $H(z) = 0$

 - Interesting when z is ON the unit circle.

 \[
 H(z) = 1 - 2 z^{-1} + 2 z^{-2} - z^{-3}
 \]
 \[
 H(z) = (1 - z^{-1})(1 - z^{-1} + z^{-2})
 \]

 Roots: $z = 1, \frac{1}{2} \pm j \frac{\sqrt{3}}{2}, e^{\pm j\pi/3}$

PLOT ZEROS in z-DOMAIN

FREQ. RESPONSE from ZEROS

- Relate $H(z)$ to FREQUENCY RESPONSE
- EVALUATE $H(z)$ on the UNIT CIRCLE
 - ANGLE is the same as FREQUENCY

\[z = e^{j\hat{\omega}} \text{ (as } \hat{\omega} \text{ varies)}\]

defines a CIRCLE, radius = 1

\[
H(e^{j\hat{\omega}}) = H(z)\bigg|_{z = e^{j\hat{\omega}}}
\]
nulling property of $H(z)$

- When $H(z) = 0$ on the unit circle.
 - Find inputs $x[n]$ that give zero output

$$H(z) = 1 - 2z^{-1} + 2z^{-2} - z^{-3}$$

$$H(e^{j\theta}) = 1 - 2e^{-j\theta} + 2e^{-2j\theta} - e^{-3j\theta}$$

- Evaluate $H(z)$ at the input “frequency” ω

$$H(e^{j\frac{\pi}{3}}) = 1 - 2e^{-j\frac{\pi}{3}} + 2e^{-2j\frac{\pi}{3}} - e^{-3j\frac{\pi}{3}} = 0$$
DESIGN PROBLEM

• Example:
 – Design a Lowpass FIR filter (Find \(b_k \))
 – Reject completely 0.7\(\pi \), 0.8\(\pi \), and 0.9\(\pi \)
 – Estimate the filter length needed to accomplish this task. How many \(b_k \)?

• Z POLYNOMIALS provide the TOOLS

CASCADE EQUIVALENT

• Multiply the System Functions

\[
H(z) = H_1(z)H_2(z)
\]

CASCADE EXAMPLE

\[
\begin{align*}
H_1(z) &= 1 - z^{-1} \\
H_2(z) &= 1 + z^{-1} \\
y[n] &= x[n] - x[n - 1] - w[n] + w[n - 1]
\end{align*}
\]

L-pt RUNNING SUM \(H(z) \)

\[
H(z) = \sum_{k=0}^{L-1} \frac{z^{-k}}{1 - z^{-1}} = \frac{1 - z^{-L}}{L(1 - z^{-1})} = \frac{z^{L-1} - 1}{Lz^{L-1}(z - 1)}
\]

\(z^L - 1 = 0 \quad \Rightarrow \quad z^L = 1 = e^{2\pi jL/k} \)

for \(k = 1, 2, \ldots, L - 1 \)

ZEROS on UNIT CIRCLE

[2-1] in denominator cancels k=0 term

11-pt RUNNING SUM \(H(z) \)

\[
H(z) = \sum_{k=0}^{10} z^{-k}
\]

\[
H(z) = (1 - e^{j2\pi/11}z^{-1})(1 - e^{j4\pi/11}z^{-1}) \cdots (1 - e^{j20\pi/11}z^{-1})
\]

NO zero at \(z=1 \)
FILTER DESIGN: CHANGE L

Passband is Narrower for L bigger

![Filter Design Diagram](image)

NULLING FILTER

- PLACE ZEROS to make \(y[n] = 0 \)

\[
H(z) = 1 - 2z^{-1} + 2z^{-2} - z^{-3}
\]

the output resulting from each of the following three signals will be zero:

- \(x_1[n] = (z_1)^n = 1 \) \(y_1[n] = 0 \)
- \(x_2[n] = (z_2)^n = e^{j\pi/3} \) \(y_2[n] = 0 \)
- \(x_3[n] = (z_3)^n = e^{-j\pi/3} \) \(y_3[n] = 0 \)

3 DOMAINS MOVIE: FIR

![3 Domains Movie Diagram](image)

POP QUIZ: MAG & PHASE

- Given: \(H(e^{j\theta}) = e^{-j\theta} \cos(\theta) \)
- Derive Magnitude and Phase

\[
|H(e^{j\theta})| = |e^{-j\theta}|, |\cos(\theta)| = \cos(\theta)
\]

\[
\angle H(e^{j\theta}) = \begin{cases} \hat{\theta} \quad \cos(\hat{\theta}) \geq 0 \\ \hat{\theta} + \pi \quad \cos(\hat{\theta}) < 0 \end{cases}
\]

POP QUIZ : Answer #2

- Find \(y[n] \) when

\[
x[n] = \cos(0.25\pi n)
\]

\[
y[n] = |H|\cos(0.25\pi n + \angle H) = 0.707\cos(0.25\pi n - \frac{\pi}{4})
\]

\[
H(e^{j\theta}) = e^{-j\theta} \cos(\theta) \quad \text{at } \hat{\theta} = \frac{\pi}{4}
\]

\[
H(e^{j\pi/4}) = e^{-j\pi/4} \cos\left(\frac{\pi}{4}\right) = 0.707e^{-j\pi/4}
\]

Ans: FREQ RESPONSE

![Frequency Response Diagram](image)
CHANGE in NOTATION

- Relate $H(z)$ to FREQUENCY RESPONSE

$$H(\hat{\omega}) = H(z)\bigg|_{z = e^{j\hat{\omega}}}$$

NEW NOTATION for FREQUENCY RESPONSE

$$H(\hat{\omega}) \leftrightarrow H(e^{j\hat{\omega}})$$